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THE SOLUTION OF BOUNDARY VALUE PROBLEMS FOR THE GENERALIZED CREEP EQUATIONS 
WITH CONDITIONS IN THE FORM OF INEQUALITIES ON THE BOUNDARY* 

A.M. KHLUDNHV 

The problem of the existence of solutions of boundary value problems for 
generalized creep equations with conditions in the form of inequalities 
on the boundary is considered. In particular, these describe the contact 
with a rigid body on the boundary. Analogous questions were examined 
earlier for other creep models /l/ and for an elastic body /Z-4/. The 
method proposed to prove the existence of the solution is constructive and 
can be used to construct approximate solutions. 

Consider the boundary value problem for the generalized creep equations /5, 6/ 

- U*j,j =ft, i = 1, 2, 31 (1) 

eiJO.4 = ctJkPi,l + B (t) 1 (#+’ StJ, i, i = 1, 2, 3 (2) 

eij (n) = ‘/Z (ui, j + uj, i)? Cijk[ E Lm (62)9 1 (s) = (‘/&j&j)“’ 

u = 0 on I'1 X (0, !f); U~JVJ = 0 on r2 X (0, !l’)I (3) 

0, = 0, uv < 0, ~lv < 0, ad4 = 0 onr, x (0, T) (4) 

Here uiJ is the stress tensor, Stj is the stress tensor deviator, u = (y,~,,"~) is the dis- 
placement vector, VJ is the derivative with respect to the variable 213 B (t). s are the 
creep function and index, ?z> 1, cihl is the elastic-constants tensor that possesses the 
usual properties of symmetry and positive definiteness, l" is the smooth boundaryofthe domain 

51 CRY, r = rl u r2 u rs, ri n rJ = 0, i #i, v = (% vz, 

vQ) are components of the exterior normal to r, UV= uev, 0; is the normal component of the 
vector a,pJ, 0, = (ulr. a%, (J&t ull= UiJvJ - uVvf- summation. is assumed over the repeated 
subscripts. Quantities with two subscripts are considered symmetric, Q-Q x (0, T), T>O, 
(J = {ali}, 8 = {s*J}. The functions u, uin problem (l)-_(4) are desired. 

The following assumption will be used when proving the main result. We shall assume that 
a solution H=C (0, T; Ii”+” (ii)) exists for the system of equations (1) which satisfies the 
second boundary condition of (3) and the first two conditions of (4) (in the distribution 
sense). It can be shown that a broad class of functions f , exists for which there is such a 
solution 5:. 

Let Wr, be a Sobolev function space 

wrl= {a = (u,, up, aa) E w~+,,,W I u = 0 on r,) 

Theorem. Let B(t) be a continuous function in [0, T] such that 

B (1) a fJ > 0, p = con&, mes rr > 0, fr E c (0, T; tn+i (63)) 

and the assumption formulated above relative to the solution 5 of system (1) is satisfied. 
Then a solution of problem (l)-_(4) exists satisfying the conditions 

u E L" (0, T; L2 (Q)), S E Lrn (0. T; Ii’+’ (a)), u EL” (0, T; W,,) 

Proof. The general scheme of the reasoning below is as follows. We first consider the. 
special approximation of problem (l)-_(4). The degree of approximation will be characterized 
by the parameter S> 0. For a discrete analog, in time, of the problem regularized in this 
manner, we will prove that a solution exists by using the duality method. We then obtain 
a priori estimates that are uniform in the regularization parameter and in the time spacing. 
In conclusion, we pass to the limit. 

Let N be a positive integer. We set .h= TN" and we introduce the notation 

A (t) = {u E L”+’ (S2) I - U~J,J = ft (t); U~JV~ = 0 on r,} 

Ao = {U E L”+’ ($2) 1 - Uij, j=O; U~JVJ = 0 On r,} 
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Furthermore, 6 will be a fixed positive number. For each m=O, I,.. ., N - ? weconsider 
the functional 

G (U, a) = (CijklukIr %j> 

Here <., a) denotes the duality between Lp(Q) and Lq (Q), p-’ +q-’ = 1. Also, let 

K = {u E L*+i(O) I utj,j E L”+’ (Q), a, < 0, u, = 0 on r,} 

and let Wr,- be a closed convex set in Wr,defined by the condition i+qO on JJ3. It is 
known /7/ that we can take 

II u lb, = 4 le@)I1/*d~~, A=* t e(U)=(Qj(u)} (5) 

as a norm in Wr,. 
By using this it can be deduced that the set of vectors eE Ll+ll”(Q), for which eiJ = 

efj (u), u E %I- will be a closed (and convex) subset in Ll+l"'(Q), Furthermore, we introduce 
two functionals in D+u*(a) 

- (fi(hm), ui>, 
F(e)= + o. 

i 

if eij =eij (U)r U E W,, 

otherwise 

G(e)= sup ((a, e) -H(o)} 
a~L~“cwk) 

and we consider the problem of minimizing their sum on Ll+lln (0). By virtue of the definitions 
of F and G it is equivalent to the following: 

inf [sup [<a, e (24)) - H (011 - (fi VW, uf>) 
=wr,- ocr,~l(R) 

(6) 

Let us establish the solvability of the problem obtained in this manner. The equation 

<H' (u), a> - (e (u), a> = 0, V a E Lnti (Q) 

holds at the point UE L”+‘(Q) h w ere the exact upper boundin (6) is achieved for the given u, 
Therefore 

sfj (u) = rtlk~Ukl f B (hm) [I (Q)“%J f 61 (‘J)“-fotjI (7) 

Substituting the value of efj (u) found into the expression in the square brackets in (6), 
we find that this expression equals 

-+C(u,u)+$$$) [I z(S)"+1 ds + 6 1 z(u)n+l dz] 
P P 

We again use the fact that the norm in wr, has the form (5). Then we obtain from (7) 

(II * II* is the norm in tP(Q)) 

II u uwr,g C1 II U U1+1/n + IlSlG+l i- 6 II Q II:+11 (8) 

Here the constant c depends on ctJklv B,Q but is independent of u,U. We therefore have 

G (e 04) + F (e 04 > +C(u.u)+ q$y ( II s II::; + 6 II C-J lIZi:=:, - II f (W IIn+ II u llwr, 

Taking (8) into account, we.. conclude that G (e (u)j f F (e(u))+ + OD as )I u IIwr,+ + 00. 

Consequently, the existence of a solution in (6) follows from the weak semi-continuity from 
below of the functional under consideration. 

Let u= lb" E wr; be the solution of (6). We will prove that the adjoint problem also 
has a solution. From the definition it follows that G* (u)=_(a). Moreover 

F*(--a)= sup {- (u, e) - F(e)) = sup {- <uij* eij (U)> + 
raLl+‘h’(Q) U’-W& 

O’ 

if ufzKfl A&m) 

fca otherwise 
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Let us clarify the last equation. If u~,,~ + - fl (hm), then obviously F* (- 5) = -k a~. 

Let fii,,, = - fi (hm). We then take a sufficiently smooth function U E wn-* Writing Green's 

formula 
- <Ott, E*f (U)) + <fi (hm), Ui> = - X5%3 %>I/* - <% %>I/* (9) 

we see that the formula for F* (-a) holds. The brackets (s, *hf. denote the duality between 

H-Q (I') and %'I1 (r). Since e, 5fj.j E Ln+’ (Q), then a,, a, belong to the space %+ (I?) in 

particular (see 181) so that (9) has meaning. 
Therefore, the adjoint functions are defined. Then the problem adjoint to (6) withrespect 

to the perturbation f.D((e, q)I-G(e)+ F(e- q) has the form /9/ 

_$l,(n,{G* (0) i- K* (- a)) = inf H (5) (10) 
GKnA(hm) 

Because of the convexity and coercivity of the functional %(a), the solution a-_ d^f 
K n A (hm) of problem (10) exists. 

The relationship /9/ 
G(e(P)) + G* (a"')=(e(tP), a"> 

holds for the solution of the adjoint problems (6) and (10) _ 
Hence it follows that 

H (urn) - <urn, e (urn)> g H (a) - <a, E (u”)), vu E L”+‘(Q) 

This means that the functional a(+)-<., s(P)'> reaches a minimum at the point d", and 
hence the following equation holds: 

<H' (am), a> - <s(z.P), a>= 0, VaE L"+'(Q) 

from which we conclude that 

sil (urn) = ctlklaklm + B (h) [I (8”‘)“-’ Q”’ + 6 I (P)*‘a~j”‘J (11) 

We note that urn, 6 satisfy the following boundary condition in the weak sense: 

uvmuy” = 0 on r, (12) 

Indeed, the second extremal relationship for the solutions of problems (6) and (10) has 
the form F (a (u")) + F' (-urn) = --te (urn), Urn), meaning Ceil (u"). e$) = Cfi (hm),+. Assuming sufficient 
regularity of the functions recurring here, we obtain 

ceij (P), bijm> = - quim, 5c j) + s u,,mu,,m dr +s UT%,“’ df 
r r 

Since urn= K 0 A (km), u".= W& (12) follows. 
We obtain arbitrary estimates of the solution. The function am is a solution of (lo). 

Consequently, the inequality 

<%' (5”), a-a"')>O,VaEKfl A(h) 

holds at the point a". 
Substituting the quantity P=?i((hm)~K 0 A (h) as a here, we obtain 

G ((rm* urn) + 2% (!zJa) { JI s" I$; + s 1 urn 82:) < c (a=* s=) + 

B (h) {(I (P’)*‘s~j”‘~ &j”‘> + 6 <I (a")*1 Oij"', a,,"'>} 

From this inequality the following estimate holds: 

(13) 

with a constant c independent of N, 6, sd&,. 
Let us now consider the concluding step of the discussion. 

an8 as &+O. 
We pass to the limit ash-0 

Let ah, z&h, %h be fUnctiOnS, piecewfse-constant in t, such that they equal ~,,U~~%(~)? 
respectively at the points hm. From the estimate (13) and the construction of %h it follows 
that a subsequence (notation as before) can be selected for which as h-t 0 (6 is fixed) 

ah+ 4 +-weakly in Lm(O,T;Ln+i(Q)), Br+% strongly in L-(0, T) 
(14) 

From (11) we have f[ s&,)/l 
W,,), 

LwlO,r;L~+~,nfa)t \< c, so that the sequence uh is bounded in L- (0, T; 
end consequently, it can be considered that 
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uh+ U&*-weakly in L- (0, T; wr,) (151 

If a", u", B (fim) in (11) is replaced, respectively, by oh, uh, I?,,, then the relationships 
obtained will hold over the whole interval (0, T). We pass to the limit in them as h-+0 
using (14) and (15). We obtain 

ei j (u*) = C* j**Ue, + i3 (t) [I (&)“l S$ f &I (1Ja)~-1 Ui P] (16) 

The justification for the possibility of a passage to the limit in the non-linear expres- 
sions is on the basis of the monotonicity of the mapping 

u+ {I (s)9t,}, u -, {I (u)"-'utr} 

The proof of the monotonicity can be obtained as follows. We note the equation which has 
already been used 

& r(SP =qI(s)n-lsij (17) 
1) 

The functional 

u+ I (s)“+l dz s 
P. 

is convex in L"+'(P). A consequence of its convexity will be the monotinicity of the gradient 
whose components are calculated using (l.7) . 

We now pass to the limit as 6+0. The estimate (13) is uniform in 6. Consequently, it 
will hold for the functions ad, @. Moreover, ub will be bounded in Lw (0, T; WQ). Selecting 
a subsequence (notation as before) having the property 

u$.+ a*-weakly in .Lm (0, T; L2(Q)), &+ SW-weakly intm (0, T; L""l (a)) 

UJ + u *-weakly inL_ (0, T; Wri), SZ (u*)"-%~~~ + 0 weakly in L1+lln (0) 

we can pass to the limit as 6-0 in (16). The limit functions u, m yield the solution of 
(l)-_(4) . This completes the proof of the theorem. 

The function o will be unique in the theorem obtained. 
To prove this it is sufficient to consider relationships (2) which are obtained from (16) 

after passage to the limit as 8-O. These relationships are satisfied in the sense of the 
identity 

5 
C(s,z)lil+j 'Ui,zij,j,df+ ~*(rt~1(3jblSij,Til)df=0 (18) 

0 0 0 

which holds for any sufficiently smooth functions T satisfying the second boundary condition 
(3) and the first two conditions (4). In particular, the solution 5 can be substituted as T. 
If the existence of two different solutions rr',ol and u%, at is assumed, then for G = @I - 01 

it follows from (18) and (1) that 

T T 

s C (a, o) dt + s I3 (1) (I ($1)“-’ sij’ - I (~*)“%~ja, sij’ - J$) dt = 0 
0 0 

Because of the non-negativity of the expression corresponding to the creep strains, we 
obtain OS% 

The method of proof proposed for a solution to exist is constructive and can be useful 
for constructing approximate solutions. Namely, for any 6,h an approximation can be deter- 
mined for u and 0. For this, two minimization problems must be solved in each layer m: 

~~~,~*~{G~e) +J'(eH, inf {G* (G) + F* (--a)) 
a‘sL~+~~P1 

The first of these enables the displacement to be determined, and the second the stress. 
The solution of the initial problem is obtained after passing to the limit as h +O, 6 +O. 
Introduction of the parameters 6 results from the need to regularize the term corresponding to 
the creep strain. This is explained by the fact that .the scheme of investigations assumes 
an analytically exact description of dual spaces. In this case these spaces are L"'I(i;z) and 
L'+n" (5t). However, the stress in the initial probl.em is an element of the space {UE 
LL(B) 1 s E L'+'(Q)} which makes direct construction of the adjoint problems difficult. A 
result of the adjointness of the above-mentioned problems is the extremal relationships (11). 
If the passage to the limit is realized therein as 6 +O, then the equalities obtained in 
that manner will actually be an extremal relationship for an analog of the initial problem 
discrete in t. At the same time (2) can also be considered as a certain extremal relationship 
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for the solution of problem (l)-_(4). Namely 

a 
ei j t”) = a3. 

v 
-$- cklp@klap9 + & B 0) 1 W1) 

Note that the Signorini boundary value problems considered in this paper describethe 
case when the possible area of contact is selected in advance and cannot grow with time (i.e., 
the greatest possible area of contact is selected), although the presence of contact at any 
given point is not assumed in advance but is determined only as a result of solving the problem. 
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NON-LINEAR DEFORMATIONS AND LIMIT EQUILIBRIUM OF 
THREE-DIMENSIONAL CURVILINEAR RODS* l 

I.V. SHIRK0 

The stress and deformation state of three-dimensional curvilinear rods of 
circular cross-section is investigated byond the elastic limit. The Kirchhoff- 
Love hypotheses used. The rod defromations'are assumed to be small, but 
the displacements and the angles of rotation of the central line are 
arbitrary. The relation between the deformation and the stress states in 
the plastic region of the material is taken in the form of a linear relation 
/I/ between the deformation rates and stresses. The coefficients of the 
equations of this connection are assumed to be specified (for example in 
the form of a table) by functions of stress components, deformations, time, 
temperatures, etc. An appropriate selection of these coefficients enables 
one to describe various models of a solid deformable body. 

The method of linearizing the resolving system of equations proposed here enables us to 
use, for solving specific problems, computational algorithms developed in investigations of 
geometrically non-linear deformations of elastic rods. It is shown that under specific condi- 
tions the elastic kernel, whose cross-section is of elliptic form, degenerates either into a 
point or a line, and the rod cross-section passes into a purely plastic state. In the purely 
plastic state the relation between the moments and the force acting over the cross-section is 
finite, which in the space of generalized force factors (the dimensionless axial force, the 
twisting and bending moments) are fairly accurately approximated by a sphere. The application 
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